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Abstract

An implicit unstructured grid algorithm for
solving 2-D and 3-D unsteady compressible viscous
flows is presented.  It is an extension of the COBALT
finite volume unstructured grid code, and can handle a
combination of cells of arbitrary type.  The explicit first
to fourth order accurate Runge-Kutta time integration
algorithm in the original solver is replaced with the
solution of an implicit system of nonlinear algebraic
equations for the flow variables. This nonlinear system
is first linearized about the flow state at an earlier time
level (or iteration), and the resulting system is inverted
using a two pass scheme. During the first pass, the
flow property changes at the cell centers are updated
first by ascending a cell reorder array; during the
second pass, the cells are updated by descending the
cell reorder array.  In unsteady applications, a Newton
iteration scheme is used at every time step to eliminate
the errors associated with the linearization and the
errors associated with the two pass scheme.  Results for
internal and external; steady and unsteady; 2-D, 3-D
and axi-symmetric flows are given.

Introduction

One of the challenging problems currently
facing the fighter aircraft industry is the ability to solve
the 3-D flow equations over complete aircraft
configurations. Such simulations can assist the
designer in component design, in quantifying vortex
lift enhancement, and in assessing the effects of vortex
flow over the wing on the vertical tail airloads.
Simulations involving unsteady airloads are important
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in determining structural strength through aeroelastic
analysis.  Unstructured grid based methods have been
the preferred tools for modeling combat aircraft,
because of the speed with which grids can be generated
around these complex configuration compared to
structured grids.  Full aircraft simulations using
unstructured grids have been successfully done1.

Most finite volume unstructured algorithms
are explicit.  These methods are ideal for design, but
are not suitable for time-dependent flows2-4, or
aeroelastic analysis because of their stiffness.  Implicit
methods are needed for specific time steps and/or very
large time steps to make solving time dependent flows
tractable.

Although many of the unstructured grid
schemes have only been applied to steady problems5-8,
relatively few time-accurate simulations have been
carried out9-10. Most of these implicit schemes use
Roe’s approximate Riemann solver or the Van Leer
flux splitting scheme, and a diagonalization of the
Euler Jacobians as a basis for the time integrations.
Batina has used a point Jacobi, Gauss-Seidel, and a
point implicit procedure to integrate in time.
Venkatakrishnan and Mavriplis11 have used GMRES
with various preconditioning matrices as iterative
techniques to integrate the equations in time.

The present study is aimed at the development
of an unsteady unstructured solver that can be used for
the entire flow regime of interest to the aircraft
industry, from low subsonic speeds to hypersonic
speeds.  The flow solver uses the approximate Riemann
solver of Collela12 which is stiffer than the Roe solver,
but is believed to be more accurate in the high speed
regime. It is well known that accurate capturing of the
viscous shear layer requires the use of hexahedral cells
in the boundary layer. Therefore, the flow solver
permits a combination of hexahedral (prismatic) cells
and tetrahedra. Finally, the one-equation turbulence
model used in this solver had to be integrated using an
implicit scheme.  The implicit solver had to be able to
handle these new features, and attendant complexities.
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Mathematical and Numerical Formulation

Original COBALT Code

 The original unstructured code COBALT13

solves the 3-D unsteady Navier-Stokes equations which
are first cast into integral form using the divergence
theorem.  The original solver is based on the first-order
accurate in time and space, exact Riemann solver due
to Godunov14. Exact Riemann solvers are very
expensive, so the approximate Riemann solution
method due to Collela in combination with the iterative
method of Gottlieb and Groth15 is utilized.  Second
order accuracy in space is achieved by assuming that
the flow properties vary trilinearly within each cell.
The flow gradients within a cell are computed by a
least squares method.  Second, third and fourth order
accuracy in time is achieved using a multi-stage
Runge-Kutta integration.

COBALT can solve 2-D, axi-symmetric, and
3-D Euler and Navier-Stokes problems. As stated
earlier, the grid may be composed of any number of
cells of arbitrary types. Different cell types are
permitted with the same grid.  In addition, the grid can
be decomposed into sub-domains, called zones, to
permit the solution of problem that are too large to
reside in main memory.

Implicit Modifications

The present scheme is similar to two pass
Gauss-Seidel schemes currently employed in some
structured grid codes. There are several significant
variations necessitated by the arbitrary numbering of
cells in unstructured grids.

The Navier-Stokes equations in integral form
are given by:
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and R, S and T are the viscous fluxes,
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In the above equations, ρ
w are the fluid velocity components; E is the total
energy per volume; T is temperature; k is the

τxx τxy τxz τyy

τyz τzz are the viscous stress tensor components.
For 
modified to include the grid velocities.  In this case,
equation (1) would become
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The first integral of equation (1) is over the
q at the cell

are the summation over all the faces of the current cell
of the 

In semi-discrete form of equation (1) may be
written as:
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this will be assumed to be the case here.  However, the
method has been developed for general deforming
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meshes. In the present implicit scheme, the viscous
fluxes are treated explicitly.  Define,

$ $ $ $F F G H= + +i j k

so that the semi-discrete Euler equations can be written
as:
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where ∆S is the face area, R1 are the viscous
contributions evaluated at the previous time level,  and
$n  is the unit normal to that face.

In an implicit scheme, $F  will be computed at
the new time level n+1.  Expanding $F  about a known
time level, n, we get:
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semi-discrete form becomes:
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where the right hand side contains information only at
the known time level and may be evaluated at the start
of a given time step.  In the present work, this was
done using the existing Riemann solver in COBALT.
This ensured the implicit solver and the explicit solver
will yield identical steady state results.

The matrix $A  has real eigenvalues and may

be split into two matrices $A+  and $A− .  In the present

work, the matrix $A  is split according to Jameson and
Turkel16, and Yoon and Kwak17:
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where β is a relaxation factor and λ max ( $ )= ⋅ +V n c .

Equation (6) now becomes:

[ ]Vol
d

dt
Snc neighbor

All faces

n

All faces

q
A q A q F n R+ + = − ⋅ ++ −∑ ∑$ $ $ $∆ ∆ ∆ 1

   (7)

where nc is the current cell.
Note that the terms involving the factor β add

a numerical viscosity, similar in spirit to the implicit
viscosity present in alternating direction implicit
schemes. The formal temporal accuracy of the scheme
is not compromised, so long as β is of order unity.
Furthermore, in iterative time marching schemes to be
discussed later, the error introduced by this factor will
be driven to zero as ∆q is driven to zero.

Replacing the time derivative with a finite
difference approximation, the semi-discrete form
becomes:
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Note that the $A q−∆ quantity represents the flux

change associated with waves that have a negative
wave speed, i.e. waves that enter the cell nc from
outside.  Only the neighbor cells can participate in this

computation of the flux changes. Likewise, $A q+∆
represents flux changes associated with waves of
positive wave speed, i.e. waves which leave the cell nc.
These flux changes should be computed using
information only within the cell nc.

Since the present scheme is a point implicit
scheme, the neighbor values are either know or set to
zero.  Therefore, the equation (8) becomes:
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or,

[ ] { }M q RHS∆ nc
n=                      (10)

This is a 5×5 matrix and diagonally dominant.  It is
easily inverted.  the solution is updated by:

q q qn predictor n, = + ∆                     (11)

During the second sweep, the elements are updated in
the reverse order.

In order to improve convergence, the cells are
locally reordered.  In the present scheme, we sweep in
a reorder direction to maximize the number of
neighboring cells whose ∆q’s have been calculated
before the current cell.  This is achieved by starting at
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Fig 1a: Explicit Solution Density Contours for the
Supersonic Ramp, M = 1.9
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Fig 1b: Implicit Solution Density Contours for the
Supersonic Ramp, M = 1.9
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a user specified cell.  This cell number is added to a
sweep direction list.  All its neighbors are then added
to the sweep list.  Each entry in the sweep list has its
neighbors checked; if a neighbor cell is not already in
the sweep list, add it.  This process is continued until
all the cells are added to the sweep list.  The first
sweep follows the order of the sweep list; the second
sweep follows the reverse order.

Iterative Time Marching Scheme:

For unsteady flows involving very large time
steps, a slight variant to equation (6) is solved:
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where ∆qm+1 is viewed as changes in flow properties

between successive iterations, m, rather than successive
time steps n.  The right hand side is the discrete
approximation to the unsteady governing equations.
At convergence of a iteration,

q q qm m n+ += =1 1

and the discrete form is exactly satisfied.  Errors such
as linearization errors, the errors associated with the
factor β and the LU approximate factorization errors
all vanish.

Grid Deformation:

In the present study, for unsteady flows in
which the grid is allowed to deform,  the volume term
is not brought outside of the time derivative.  The
corresponding discrete equation is:
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calculated by:

( ) ( )[ ]
q

q q
m

m m 1

m

Vol Vol

Vol
+

+

+=
+

1
1

∆
              (14)



5

Fig 2a: Explicit Solution Mach Contours for
the CD Nozzle, M = 0.1467
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Fig 2b: Implicit Solution Mach Contours for
the CD Nozzle, M = 0.1467
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Results and Discussion

A wide range of tests cases has been run to
validate the implicit version of COBALT and to show
the improvement in computational efficiency gained
over the original explicit algorithm.  These test cases
include both internal and external flows.  Results are
obtained for 2-D, 3-D, and axi-symmetric flows.
Steady and unsteady simulations have been run and are
compared with the explicit algorithm’s solution or with
experimental data.

Supersonic Ramp

The ramped channel is a simple supersonic
inlet modeled with one straight wall and one ramped
wall, with the inlet M = 1.9.  The ramp angle was
14.93°.  The grid contains 4,096 triangular cells   The
resulting shock has an oblique section and a normal
section.  The explicit solution is shown in figure 1a.
The implicit solution is shown in figure 1b for
comparison. It is clearly seen that the implicit
algorithm converges to the same solution as the
original explicit algorithm. Both solutions calculate the
number of supersonic cells to be 3963 and the axial
force to be 2.8×105 N as seen in figures 1c and 1d.  The
implicit algorithm converges in 1 minute of CPU time

as compared to 3.2 minutes for the explicit algorithm.
All runs were done on an IBM RS6000 workstation.
No machine specific coding was done; therefore, a
greater speed up could be accomplished if the
machines architecture was taken into account.  Notice
that this problem has large subsonic and supersonic
regions.  A sweep against supersonic flow can be
destabilizing; but, the opposite sweep stabilizes it.  No
unexpected difficulties were encountered.

Converging-Diverging Nozzle

This test case deals with choked flow through
a converging-diverging axi-symmetric nozzle.  Cobalt
needs only one plane, x-r, of data to calculate axi-

symmetric flow.  The axi-symmetric form has a P
r

term which has been added both to the right hand side
of the explicit code and to the LU factorization in the
radial direction momentum equation. The grid contains
784 quadrilateral cells. The inlet Mach number is
M=0.1467.  Figures 2a and 2b show Mach number
contours for the explicit solution and the implicit
solution, respectively. Clearly, both algorithms
converge to the same solution. Both algorithms
converge to 279 supersonic cells and an axial force of
2.4×106 N as shown in figures 2c and 2d.
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Fig 3a: Explicit Solution Pressure Contours
for the AGARD Boat-Tail Nozzle,

M = 0.8, Re = 18.64 Million
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Fig 3b: Implicit Solution Pressure Contours
for the AGARD Boat-Tail Nozzle
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The implicit solution is converged in 11 CPU seconds,
while the explicit solution requires 47 CPU seconds.

AGARD Boat-Tail Nozzle

In this test case, turbulent flow through an
AGARD Boat-Tail axi-symmetric nozzle is simulated.
The grid contains 13,452 quadrilateral cells.  The inlet
Mach number is M = 0.8, and the Reynolds number is
18.64 million.  Implicit modeling of the turbulence
effects is achieved by augmenting the diagonal term.
In this case, the Spalart-Allmaras turbulence model is
employed, and was integrated implicitly in time using
a variant of the present LU scheme.  Figures 3a and 3b

show pressure contours for the explicit and implicit
solution, respectively. Both solutions converge to the
same answers.  Figure 3c shows the convergence times
for the explicit and implicit algorithms.  Both solutions
converge to an axial force of 33.5 N.  However, the
implicit algorithm does so in less than 1 hr of CPU
time versus 3.5 hr of CPU time required by the explicit
algorithm.

GA(W) -1 Airfoil

This airfoil was tested by Wentz and
Seetharam18 and is widely used for code validation.
The present simulation uses the 29% chord fowler flap



7

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Cp

Cobalt
Experiment

Fig 5a: Cp Distribution for the F5 Wing at
35.2% of the span, M∞∞ = 0.95

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Cp

Cobalt
Experiment

Fig 5b: Cp Distribution for the F5 Wing at
72.1% of the span, M∞∞ = 0.95

set at  30° flap deflection angle.  The grid contains
14,609 triangular cells.  The simulation M∞= 0.14
matches the experimental conditions.  The experiment
was run at Re = 2.2 million.  For the present study,
three angle of attacks, α=0°, α=5°, and α=10° were
considered.   The surface Cp distributions are plotted
in figure 4a-c, respectively.  Good correlation over the
airfoil surface is observed.  The suction peak
magnitude is seen to be predicted, but the location is
slightly forward of the experimental data.  The slight
bump in the Cp distribution on the lower surface at
0.6-0.7c is due to lack of geometric surface definition
from the experiment in this region.  Good correlation
between the calculations and the experiments observed
over the flap also.

F5 Wing

The F5 wing was tested by Tijdemann19-20 at
steady angles of attack and with a harmonic oscillatory
motion for a wide range of Mach numbers.  This case
has been studied by a number of researchers, and
makes an excellent test case due to the complexity of

the geometry, and the combined bending-torsional
deformations that must be simulated.

F5 Wing - Steady Flow Simulations

For the validation of the implicit algorithm in
3-D, steady transonic flow, the test case at M=0.95 was
simulated.  The grid was composed of 184,800
hexahedral cells.  The angle of attack for this case was
α = 0°.  Figures 5a, b and c show the Cp distributions
at spanwise location of 35.2%, 72.1% and 97.7% of the
span.  Good correlation is obtained at each span
location.  As may be expected, the present inviscid
simulation predicts a shock that is slightly aft and
slightly strong compared to the experiments.

F5 Wing - Unsteady Simulations

The F5 wing unsteady test case simulated is a
harmonically oscillating surface. The movement of the
wing surface is obtained using the mode shape found in
Tidjemann20.  This mode shape can be considered to be
a rigid rotation of each spanwise section about a node
line, as discussed by  Weed21 and Mello22.  This
simulation had a Mach number of M∞= 0.95, a reduced
frequency of k = 0.528 corresponding to the frequency
of oscillation of 40 Hz, and an amplitude of oscillation
of ∆α= 0.222°.  The results of the first harmonic, real
and imaginary components of the unsteady surface
pressure coefficients were calculated using a Fourier
series analysis. The real and imaginary Cp
distributions, normalized by the amplitude of
oscillation, at the 35.2%, 72.1% and 97.7% span
stations are shown in figure 6a-f, respectively.  This
simulation was done with 240 time steps per cycle.
The third cycle results are shown, which allows
sufficient time for the transients to be convected out of
the flow domain. The results compare well with
experiments.  The leading suction peak is sufficiently
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Fig 6c: Unsteady Pressure, Real Part at 72.1% span
M∞∞ = 0.95 and k = 0.528
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Fig 6e: Unsteady Pressure, Real Part at 97.7% span
M∞∞ = 0.95 and k = 0.528
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Fig 6b: Unsteady Pressure, Imaginary Part at
35.2% span M∞∞ = 0.95 and k = 0.528
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Fig 6d: Unsteady Pressure, Imaginary Part at
72.1% span M∞∞ = 0.95 and k = 0.528
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Fig 6f: Unsteady Pressure, Imaginary Part at
97.7% span M∞∞ = 0.95 and k = 0.528

captured.  The shock and its movement, shown as the
bulge at around  0.8 x/c, is aft of the actual shock.
This is to be expected for an Euler solution.  However,
the shock strength is too weak for an Euler solution.

Concluding Remarks

An implicit, unstructured grid based flow
solver has been described, and validated for a number

of test cases. Good agreement with measured data have
been obtained for all the cases that have been tested.
In many instances a factor of 3 or more speed up over
explicit scheme was achieved.

Additional improvements to the flow solver
are needed and are planned.  Distributed computing
can be achieved with a minimal change to the flow
solver coding.  A formal accuracy in space from 2nd to
higher order using a multi-dimensional interpolations
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can further enhance the code’s ability to capture shocks
and shear layers on sparse grids.  To date, only two
temporal validations have been done.  Additional
validations, particularly in the transonic and
supersonic regimes are needed.
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